# Numerical Analysis of a Combustion-Driven Gasdynamic Laser

M. Brunne,\* J. Milewski,† J. Stanco,‡ and A. Zielinski§ Polish Academy of Sciences, Gdansk, Poland

This paper presents a theoretical analysis and partial optimization of an open-cycle  $CO_2$  cw-GDL (gasdynamic laser) using benzene  $C_6H_6$  and kerosene  $C_{12}H_{24}$  combustion with air. The calculations are performed for an equivalency air/fuel ratio equal to 1 and the stagnation pressure  $p_0$  equal to 15 atm, with geometrices dimensions of the lasers being optimized for maximum net output radiation power per unit mass flow. In both cases, the possibility of constructing a high-power cw-GDL supplied with these fuels is suggested. For combustion of  $C_6H_6$  a specific energy  $P_g=11\,\mathrm{kW/kg\cdot sec^{-1}}$ ; whereas for the calculated ideal  $CO_2\cdot N_2\cdot H_2O$  mixture (containing 12%  $CO_2$  and 0.9%  $H_2O$ ),  $P_g=18\,\mathrm{kW/kg\cdot sec^{-1}}$ . The influence on laser performance of stagnation pressure, stagnation temperature, expansion ratio, and air/fuel ratio has been examined partially.

| Nomenclature                         |                                                       |                   | = gas mixture velocity; vibrational quantum number (N <sub>2</sub> and CO)            |  |  |
|--------------------------------------|-------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------|--|--|
| $ar{B}_{mn}$ , $ar{B}_{nm}$          | =modified coefficients of stimulated emission and     |                   | = Cartesian coordinates                                                               |  |  |
| mn, m                                | absorption                                            | x,y,z             |                                                                                       |  |  |
| c                                    | =velocity of light                                    | $X_a$             | = mole fractions of gas mixture components                                            |  |  |
| C.                                   | = specific heat                                       | $lpha_s$          | = air/fuel ratio                                                                      |  |  |
| $egin{array}{c} C_p \ G \end{array}$ | = mass flow                                           | $\eta_e$          | = total energetic efficiency                                                          |  |  |
| ħ                                    | = Planck constant $(\hbar = h/2\pi)$                  | $\eta_{\iota}$    | =laser efficiency                                                                     |  |  |
| $H_i$                                | = local height of the channel $(i=1,2,3)$             | $\eta_r$          | = resonator efficiency                                                                |  |  |
| $\Delta H$                           | = reduced heat of formation                           | $\eta_s$          | = combustion efficiency                                                               |  |  |
|                                      | = inversion coefficient $(I_v = N_m/N_n)$             | $\eta_{v}$        | = expansion efficiency                                                                |  |  |
| $I_v \ J$                            |                                                       | $\eta_w$          | = excitation efficiency                                                               |  |  |
| j<br>k                               | =rotational quantum number                            | $\nu_i$           | $= CO_2$ vibrational modes $(v_i = v_1 v_2, v_3)$                                     |  |  |
|                                      | = Boltzmann constant                                  | κ                 | =isentropic exponent                                                                  |  |  |
| $L_n$                                | = length of supersonic part of the nozzle             | $\lambda_f$       | = coefficient of gas-wall friction                                                    |  |  |
| $L_p$                                | = length of subsonic part of the nozzle               | $\lambda_h$       | = coefficient of gas-wall heat exchange                                               |  |  |
| $L_x$                                | = resonator mirror length                             | $	au_{st}$        | = relaxation time corresponding to $s \rightarrow t$ change of                        |  |  |
| $L_{y}$                              | = distance between resonator mirrors                  |                   | the molecule vibrational state $(s, t=m, n, p, o; o =$                                |  |  |
| $M_i$                                | = Mach number at station $i(i=1,2,3)$                 |                   | ground state)                                                                         |  |  |
| $M_a$                                | = gas mixture component ( $a = H_2O$ , O, CO, $O_2$ , | $\omega_k$        | = vibration frequency $(k = v, v_i)$                                                  |  |  |
|                                      | $H_2$ , A, He)                                        | $\Pi_{n}(x)$      | = dimensionless gain coefficient:                                                     |  |  |
| N                                    | = number density                                      |                   | $\int_{-L_{\gamma}}^{L_{\gamma}}$                                                     |  |  |
| $p_i$                                | = static pressure $(i=0, 1, 2, 3)$                    |                   | $\Pi_v(x) = 1/C \int_0^{\bar{L}_y} (\bar{B}_{mn} N_m - \bar{B}_{nm} N_n) \mathrm{d}y$ |  |  |
| $P_c$                                | = total output power                                  | ρ                 | = density                                                                             |  |  |
| $P_{g}$                              | = output power per unit mass flow                     | $\frac{r}{2\phi}$ | = initial nozzle divergence angle                                                     |  |  |
| $p_v$                                | = output power density per unit volume of the         | +                 |                                                                                       |  |  |
| n                                    | cavity = output power density per unit mirror length  | Subscript         | s                                                                                     |  |  |
| $p_x$                                | = enthalpy                                            |                   |                                                                                       |  |  |
| q                                    | =translational enthalpy source due to the             | a                 | = gas mixture component designation                                                   |  |  |
| $\Delta q_{v-T}$                     |                                                       | f                 | = photon                                                                              |  |  |
| 70                                   | v-T relaxation                                        | i,j               | = integers specifying a hydrocarbon                                                   |  |  |
| R                                    | = reflectivity                                        | m                 | = upper laser level                                                                   |  |  |
| $Re_i$                               | = Reynolds number $(i = 1,2,3)$                       | n                 | = lower laser level                                                                   |  |  |
| S                                    | =mirror absorption losses (both surface and dif-      | 0                 | = stagnation parameters                                                               |  |  |
| _                                    | fraction losses)                                      | p                 | $=$ excited $N_2$ levels                                                              |  |  |
| $\underline{T}$                      | = translational and rotational temperature            | v-v               | = vibrational-vibrational energy transfer                                             |  |  |
| $T_m$                                | = vibrational temperature of $CO_2(\nu_3)$            | v-T               | = vibrational-translational energy transfer                                           |  |  |
| $T_n$                                | =vibrational temperature of both $CO_2(\nu_1)$ and    | 1                 | = cross section of the nozzle throat                                                  |  |  |
|                                      | $CO_2(\nu_2)$                                         | 2                 | = inlet of the cavity                                                                 |  |  |
| $T_{ ho} \ T_{s}$                    | = vibrational temperature of $N_2(v)$ and CO $(v)$    | 3                 | = cavity outlet cross section                                                         |  |  |
| $T_s$                                | = wall temperature                                    | rad               | = laser radiation field                                                               |  |  |
|                                      |                                                       |                   |                                                                                       |  |  |

Received June 3, 1974; revision received December 9, 1975.

Index categories: Lasers; Nozzle and Channel Flow.

\*Visiting Scholar in Aerospace Research Laboratory, University of Washington, Seattle, Wash.; also Senior Research Scientist, Plasma Dynamics Department, Institute of Fluid-Flow Machines.

†Senior Research Scientist, Plasma Dynamics Department, Institute of Fluid-Flow Machines; Head of GDL Project.

‡Research Scientist, Plasma Dynamics Department, Institute of Fluid-Flow Machines.

§Research Scientist, Plasma Dynamics Department, Institute of Fluid-Flow Machines.

#### Superscripts

+, - = direction of photon motion change of quantum number

## I. Introduction

FROM the first suggestion that an expanding, nonequilibrium flow could produce a population inversion, and the first demonstration of a gasdynamic CO<sub>2</sub> laser, ever-increasing attention has been paid to problems

related to gasdynamic laser physics and technology. References 3-9 list a growing number of theoretical and experimental works dealing with various aspects of the gain and population inversion creation in rapidly expanding  $\mathrm{CO}_2\text{-N}_2$  gas mixtures.

Combustion of liquid hydrocarbons in compressed air can be regarded as a promising source of energy because these fuels are cheap, readily accessible, and easily combusted. However, in the combustion products of hydrocarbons the amount of  $H_2O$  always far exceeds the optimum value for  $CO_2$ -laser performance, which lies in the neighborhood of 1%. This fact promoted research that was centered on establishing the possibilities and limitations of gain and inversion creation during the supersonic expansion of  $CO_2$ - $N_2$  mixtures supplied with large quantities of water vapor.  $^{10-13}$ 

Up to now significantly evolved numerical techniques  $^{14-18}$  of analyzing cw—GDL channel flows have been developed. However, relatively little attention has been given  $^{3,11,19,20}$  to the direct answer to the question of the performance of a cw-GDL run by air combustion of a hydrocarbon fuel  $C_iH_j$ , the amount of radiation power that can be extracted per unit of mass flow, and the GDL efficiency. The main scope of this paper lies in calculating the performance of such a laser including a particular resonator.

#### II. Description of Analytical Model

The operation of  $C_iH_i$  combustion-driven cw—GDL is calculated in three stages: 1) calculating the composition of a gas mixture produced by burning hydrocarbons in an isothermal and isobaric chamber; 2) calculating expansion of this mixture in a supersonic convergent-divergent nozzle with friction, heat exchange with walls, and vibrational energy transfer between molecules; and 3) solving a system of equations describing interaction between an optically active medium and the radiation field inside a cw-GDL optical cavity. It must be said that nonadiabatic expansion (heat release due to vibrational energy relaxation, friction against walls, and heat losses to the walls) resulted in Mach line being slightly displaced downstream into the divergent part of the nozzle. The parameter  $H_1$ , referred to, in what follows, as a nozzle throat height, actually differs from the height of the narrowest part of the nozzle itself.

The geometry of a single-nozzle segment of the GDL under consideration is shown in Fig. 1. The gas mixture composition  $(X_a)$  and its temperature  $(T_o)$  within the combustion chamber were calculated with the aid of a numerical program 1 suitable for any  $C_iH_j$  fuel burned with an oxidizer containing  $N_2$ ,  $O_2$ , A, and, possibly, other molecular and atomic species  $(\Sigma_aX_a=1)$ . The combustion problem was considered in the steady-state approximation. Rate coefficients of formation and recombination for the general chemical reaction:

$$A[(C_{al}H_{bl}O_{cl}N_{dl}A_{el}) + (C_{a2}H_{b2}O_{c2}N_{d2}A_{e2})] \Rightarrow n_1CO_2$$

$$+ n_2CO + n_3H_2O + n_4OH + n_5H_2 + n_6O + n_7N_2$$

$$+ n_8NO + n_9C + n_{10}H + n_{1l}O + n_{12}N + n_{l3}A$$
 (1)

as well as specific heat  $c_p$ , and reduced heat of formation  $\Delta H$ , were related to temperature by semiempirical relations<sup>21</sup> based upon data gathered in standard thermodynamic tables.<sup>22</sup> The interaction with walls was accounted for by fixing the efficiency of combustion  $\eta_s = 0.9$ .

For calculation of the gas mixture expansion in a nozzle, a one-dimensional model of the flow was assumed with averaged boundary layer gas-wall friction and heat exchange effects [wall temperature,  $T_s$ , remained constant ( $T_s = 300$ °K) inside the channel], as well as apparent heating of the gas from vibrational energy relaxation processes taken into account. The calculated shape of the nozzle assured a shock-free supersonic flow into a laser channel. For calculation of intra- and intermolecular energy exchange processes, a four-temperature model<sup>23</sup> was assumed. Data

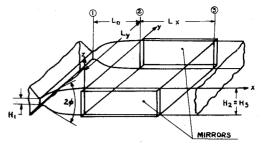



Fig. 1 Geometry of a single-nozzle element of the cw-GDL.

concerning rate constants for V-V and V-T energy exchange reactions

$$CO_2(\nu_1, \nu_2, \nu_3) + M_a \rightleftharpoons CO_2(\nu'_1, \nu'_2, \nu'_3) + M_a$$
 (2)

$$N_2(v) + M_a = N_2(v') + M_a$$
 (3)

$$CO_2(\nu_1, \nu_2, \nu_3) + N_2(v) \neq CO_2(\nu'_1, \nu'_2, \nu'_3) + N_2(v')$$
(4)

were based upon extensive review<sup>24</sup> and, additionally, on Refs. 25 and 26, and kept close to the pessimistic limit of the experimental data. The numerical program provides for possible presence of the species CO<sub>2</sub>, N<sub>2</sub>, CO, H<sub>2</sub>O, O<sub>2</sub>, H<sub>2</sub>, A, and He in the working gas.

The laser action was calculated on the basis of a kinetic model (nonlinear equations of chemical kinetics) of interaction between the radiation field (represented by photon number densities) and the system of the optically active mixture<sup>27,28</sup> (with pumping, relaxation, and spatial variability of pressure, temperature, and velocity taken into consideration).

The following assumptions were made: 1) laser action taking place between rotational sublevels of the 00°1 and 10°0 vibrational energy levels of  $\nu_3$  and  $\nu_1$  modes, respectively; 2) only the radiation power of  $P(J_{opt})$  line is accounted for, where  $J_{\text{opt}}$  corresponds, for given local values of mixture-state parameters, with maximum gain value; and 3) a high-efficiency <sup>28-30</sup> cavity model is formed by two identical parallel flat mirrors with reflectivity R(x) increasing downstream linearly<sup>28</sup> from a matched value  $R_0 = \exp(-\Pi_{v2})$  up to  $R(L_x) = 1 - S$ . The reasons to design cavities with mirrors of nonconstant reflectivity were discussed in Ref. 30. The main advantage of these hypothetical cavities lies in the possiblity of achieving the optimum matching between the cavity losses  $[-\ln(1/R)]$  and the local gain value<sup>28,30</sup> which decreases along the flow axis. This tuning can result in about a twofold increase of the resonator efficiency as compared to the efficiency of a constant reflectivity model of the GDL cavity. In practice, the model of the optical resonator in question could be manufactured by coupling the nontransmitting flat mirror with a parallel multihole mirror nonuniformly perforated along the flow axis.29 The foregoing could constitute but slight modification of the cavities largely used in GDL systems (e.g., Refs. 2 and 8) in which the transmitting multihole mirrors has been built as uniformly perforated along the flow axis.

Under all of the preceding specific assumptions, the following system of equations was integrated:

Continuity Equation

$$\rho v H L_{v} = G \tag{5}$$

**Equation of State** 

$$p = [(\kappa - 1)/\kappa] \rho q \tag{6}$$

Momentum Equation

$$\rho v(\partial v/\partial x) = -(\partial p/\partial x) - (\lambda_f/2H)(\rho v^2/2) \tag{7}$$

**Energy Equation** 

$$(\partial/\partial x) [q + (v^2/2)] = \Delta q_{v-T} - (2\lambda_h/\rho v H) (T - T_s)$$
(8)

where

$$\Delta q_{v-T} = -(\partial/\partial x) [q_{p}(T_{p}) + q_{m}(T_{m}) + q_{n}(T_{n})]$$
 (9)

Relaxation Equations

$$v \frac{\partial q_p(T_p)}{\partial x} = -\frac{q_p(T_p) - q_p(T_m)}{\tau_{pm}}$$

$$-\frac{q_p(T_p) - q_p(T)}{\tau_{po}}$$

$$v \frac{\partial q_m(T_m)}{\partial x} = -\frac{q_m(T_m) - q_m(T_p)}{\tau_{mn}}$$
(10)

$$-\frac{q_m(T_m)-q_m(T_n)}{\tau_{mn}}-\frac{q_n(T_m)-q_m(T)}{\tau_{mo}}$$

$$+ v \left[ -\frac{\delta q_m}{\delta x} \right] rad \tag{11}$$

$$v \frac{\partial q_n(T_n)}{\partial x} = - \frac{q_n(T_n) - q_n(T_m)}{\tau_{nm}}$$

$$-\frac{q_n(T_n) - q_n(T)}{\tau_{no}} + v \left[ \frac{\delta q_n}{\delta x} \right] rad$$
 (12)

In Eqs. (11) and (12) the right-hand terms,  $(\delta q_m/\delta x) rad$  and  $(\delta q_n/\delta x) rad$ , are equal to zero everywhere outside the cavity. Within the resonator region these enthalpy source terms are determined through the populations of upper and lower laser levels  $(N_m$  and  $N_n)$  by solving, jointly with Eqs. (5-8), the additional six equations, viz., the continuity equations for the respective kinds of particles, including photons:

$$v(\partial N_m/\partial x)rad = (\bar{B}_{nm}N_n - \bar{B}_{mn}N_m) (N_f^+ + N_f^-)$$
 (13)

$$v(\partial N_n/\partial x)rad = -v(\partial N_m/\partial x)rad$$
 (14)

$$(\partial \ln N_f^{\dagger}/\partial y) = -c(\partial \ln N_f^{\dagger}/\partial y) = \bar{B}_{mn}N_m - \bar{B}_{nm}N_n$$
 (15)

$$N_f^+(x,0) = R(x)N_f^-(x,0); N_f^-(x,L_y) = R(x)N_f^+(x,Ly)$$
 (16)

The population densities  $N_m$ ,  $N_n$  and enthalpies  $q_p$ ,  $q_m$ ,  $q_n$  are related to the remaining parameters by the formulas:

$$q_p(T_i) = (\omega_v/\rho)N_{\rm N_2}[\exp(\hbar\omega_v/kT_i) - I]^{-1}$$
(17)

$$q_m(T_i) = (\omega_{\nu_3}/\rho) N_{\text{CO}_2} [\exp(\hbar \omega_{\nu_3}/kT_i) - 1]^{-1}$$
 (18)

$$q_n(T_i) = (1/\rho)N_{CO_2} \left[ \frac{\omega_{\nu_I}}{\exp(\hbar\omega_{\nu_I}/kT_i) - I} \right]$$

$$+ \frac{2\omega_{\nu_2}}{\exp(\hbar\omega_{\nu_1}/kT_i) - 1}$$
 (19)

$$N_m = N_{\text{CO}_2} \exp(-\hbar\omega_{\nu_3}/kT_m) [I - \exp(-\hbar\omega_{\nu_3}/kT_m)]$$

$$[1 - \exp(-\hbar\omega_{\nu_1}/kT_n)] [1 - \exp(-\hbar\omega_{\nu_2}/kT_n)]^2$$
 (20)

$$N_n = N_m \exp\left[\left(\hbar\omega_{\nu_3}/kT_m\right) - \left(\hbar\omega_{\nu_1}/kT_n\right)\right]$$
 (21)

where  $^{31}$   $\hbar \omega_v/k = 3353$  °K,  $\hbar \omega_{\nu_3}/k = 3380$  °K,  $\hbar \omega_{\nu_2}/k = 960$  °K, and  $\hbar \omega_{\nu_I}/k = 1998$  °K.

The relaxation times,  $\tau_{st}$  and  $\tau_{ts}$ , are known functions <sup>23-26</sup> of translational temperature, static pressure, and mixture composition. The modified coefficients of stimulated emission  $(\bar{B}_{mn})$  and absorption  $(\bar{B}_{nm})$  are related to temperature, pressure, mixture composition, and rotational number,  $J_{\text{opt}}$ , also by known formulas. <sup>23,27,28</sup> The square of the laser transition dipole momentum  $(R_n^m)^2$  has been taken to be equal to  $1.255 \times 10^{-52}$  m<sup>3</sup> J (spontaneous emission time  $A_{nn}^{-1}$  = 3.13 sec), <sup>32</sup> and mixed Doppler-Lorentz broadening was taken into account. The gas-wall friction coefficient  $\lambda_f$  as well as the gas-wall heat exchange coefficient  $\lambda_h$  are calculated <sup>33</sup> using semiempirical relations defining them through local values of Reynolds, Nusselt, and Prandtl numbers, respectively.

Some parameters like the kind of fuel and oxidizer, stagnation pressure  $(p_o)$ , combustion efficiency  $\eta_s$ , the nozzle initial divergence angle  $(2\phi)$ , mirrors loss coefficient (S=0.02), and wall temperature  $(T_s)$  are assumed; the remaining geometrical and physical parameters are calculated and optimized from the viewpoint of reaching the maximum value of output radiation power per unit mass flow

$$P_g \cong 2\hbar\omega_{\rm rad}c \int_0^{L_x} H(x) N_f(x_1 0) [1 - S - R(x)] dx$$
 (22)

where  $\hbar\omega_{\rm rad}/k = 1382^{\circ}$  K. All of the results described below were obtained under the assumption that the inlet cross section of the cavity is located at a point where the dimensionless gain coefficient attains its maximum value,  $\Pi_{v2} = [\Pi_v(x)]_{\rm max}$ . The length of the subsonic part of the nozzle,  $L_p$ , was taken to be equal to 2.5  $H_I$ , and the velocity v has been assumed to increase along the flow linearly with x up to the critical value  $v_I$  at the nozzle throat. The value H(x) should be understood, in this part of the nozzle, as a length of an arc-section along potential lines rather than as the local height of the GDL channel. The flow outside the nozzle was chosen to be isobaric  $(p_I = \text{const} = p_3)$ , which gives local height of the channel in the lasing zone, H(x), slightly increasing in the downstream direction.

#### III. Description of Main Results

With the fuel, oxidizer, combustion efficiency, wall temperature, mirror losses, and nozzle initial divergence angle fixed, the analysis of the cw-GDL working at a stagnation pressure of  $p_o = 15$  atm was performed. In every case the mixture composition  $(X_a)$ , the stagnation temperature  $(T_o)$ , nozzle throat height  $(H_I)$ , local value of the channel height calculated along the flow axis [H(x)], length of the supersonic part of the nozzle  $(L_n)$ , length of the resonator mirrors  $(L_x)$ , distance between the mirrors  $(L_y)$ , and total mass flow (G) were calculated. The geometrical dimensions,  $H_I$ , and  $L_x$ , were optimized for reaching maximum value of  $P_g$  realizable in a single-nozzle cw-GDL segment filled with the working mixture (combustion products) at the rate corresponding to the mass flow G.

In the course of the optimization procedure, the throat height  $(H_I)$ , the mirror length  $(L_x)$  and the expansion ratio of the nozzle have been considered as free variables whereas the optimum values of the remaining physical and geometrical parameters resulted indirectly from maximizing  $P_g$  [see Eq. (22)]. In selecting optimum linear dimensions, an additional condition has been imposed, viz., the distance between the mirrors (optical length  $L_y$ ) should be selected in such a way that  $\Pi_{v2} = [\Pi_v(x)]_{max} = 0.7$ . From Eqs. (13-16) the following condition for continuous laser action results:  $R(x) = \exp[-\Pi_v(x)]$ ; therefore the value  $\Pi_{v2} = 0.7$  corresponds to  $R_0 = 0.5$ . In the authors' opinion the limiting condition  $R(x) \ge 0.5$  [and, correspondingly,  $\Pi_v(x) \le 0.7$ ) ought to be satisfied to avoid losses due to possible generation of parasitic laser oscillations between the sidewalls of the GDL channel upstream from the optical cavity region.

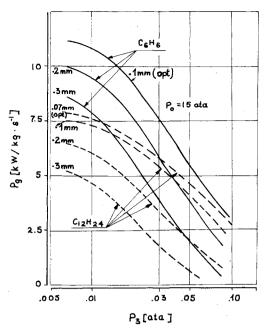



Fig. 2 Net output power per unit mass flow  $P_g$  as a function of the cavity outlet pressure  $p_3$  for the optimal and nonoptimal values of the nozzle throat height.

The calculations were performed for different values of the nozzle expansion ratio, which correspond to different values of the exit pressure  $p_3$ . As a measure of the expansion ratio of the nozzle, the quantity  $M_{2s}$  has been introduced.  $M_{2s}$  stands for the theoretical Mach number at the exit of the nozzle calculated for the mixture flow as an isentropic one.

For every GDL under consideration, together with G,  $\Pi_n$ ,  $L_x$ ,  $L_y$ ,  $L_n$ , and H(x), the five different efficiency coefficients were examined: 1) the excitation efficiency  $(\eta_w)$  defined as a ratio of virtual (theoretically available) radiation power stored in combustion chamber and net heat source power; 2) the expansion efficiency  $(\eta_v)$  measuring the freezing effectiveness and defined as a ratio of virtual radiation power at inlet cross section of the cavity and virtual radiation power stored in the chamber; 3) laser efficiency  $(\eta_i)$  defined as a ratio of net output radiation power and virtual radiation power at inlet cross section of the cavity; 4) resonator efficiency  $(\eta_r)$ defined as a ratio of net and gross output radiation power; 5) total energetic efficiency, being a product of the previously mentioned coefficients and defined as a ratio of net radiation output power and heat source power  $(\eta_e = \eta_w \eta_v \eta_t)$ ; and 6) the net output power extracted per unit mass flow  $P_{g}$  [see (22)].

To form an overall picture, examples of the distribution of  $T_m$ ,  $T_p$ ,  $T_n$ , T, v, H, and p along the flow axis are given (see Figs. 3 and 4). In addition, dimensionless gain  $\Pi_v(x)$ , dimensionless inversion coefficient  $I_v = N_m/N_n$ , and output power density per unit length of the mirrors  $P_x$  normalized to unity are plotted as functions of x coordinate along the flow axis (Fig. 3 and 4). Some results of the calculations concerning benzene are presented in Figs. 2 and 3. The x/L is a dimensionless distance along the flow axis, being referred to 2.5  $H_1$  in the subsonic part of the nozzle, to  $L_n$  in the supersonic part of the nozzle, and to  $L_x$  in the optical cavity region. So, x/L=0 in the chamber, x/L=1 at the critical section of the nozzle, x/L=2 at the inlet to the lasing zone, and x/L=3 at the exit from the cavity.

It results from Fig. 2 that in the  $C_6H_6$  case  $(H_I)_{\rm opt}$  is near 0.7 mm almost independently from the expansion ratio  $(p_o \cdot H_I)_{\rm opt} = 0.15$  atm  $\cdot$  cm) and that  $P_g$  rises monotonically with the drop of the  $p_3$  value (with increase of the expansion ratio). The problem of proper selection of the  $M_{2s}$  value (and, correspondingly, a value of  $p_3$ ) consequently can be solved easily. It is the maximum value of  $M_{2s}$  for which dynamic self-compression of the stream in a diffuser to a given outlet

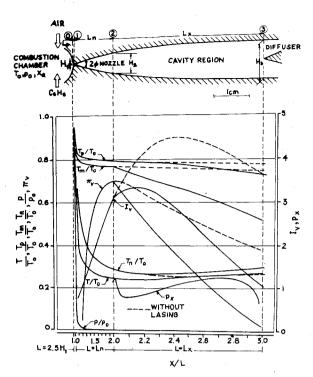



Fig. 3 Example of the distribution of several parameters along the flow axis of an optimal single-nozzle cw-GDL driven by benzene combustion in air at  $p_o = 15$  atm.

pressure is possible. For example, after fixing the expansion ratio at the value  $M_{2s}=6.9$  and choosing, appropriate for this case, values of  $H_1=0.1$  mm,  $L_x=4.25$  cm, and G=0.116 kg/sec, one can calculate all of the other parameters, as shown in Figs. 2 and 3. The results concern an optimum segment of GDL driven by  $C_6H_6$  burned in cold air  $(T=300^{\circ}\text{K})$  under the pressure of 15 atm, with self-compression of the flow in a diffuser up to the barometric pressure. (Calculations of the diffuser are not discussed in this paper.) This optimum laser gives  $P_g=10.5$  kW/kg·sec<sup>-1</sup> and  $\eta_e=0.4\%$ , which seems to be sufficiently attractive for practical applications.

The calculated value of the output power is  $P_c = 1.22$  kW, and this is the power of the single optimum segment of the laser. Consequently, a many-kilowatt GDL should be constructed as a multisegment one, comprising the demanded number of optimum segments.

In C<sub>6</sub>H<sub>6</sub>-combustion products, there is obviously too large an amount of H2O. To determine how the output power was affected by H2O concentration, the calculations were repeated for the same values of  $p_o = 15$  atm,  $T_o = 2221$ °K,  $M_{2s} = 6.9$ , looking this time for the optimal  $CO_2/N_2/H_2O$ mixture composition. As a result, it was established (Table 1) that, in the optimal case, the cw-GDL under consideration ought to be supplied with a mixture  $(X_{CO2})$  $(X_{\rm N2}/X_{\rm H2O})_{\rm ideal} = 0.1776/0.8732/0.0092,$ consequently being able to produce the amount of radiation output power  $P_g = 17.79 \text{ kW/kg} \cdot \text{sec}^{-1}$ . The eightfold increase (from lowest ideal level) of H<sub>2</sub>O concentration for C<sub>6</sub>H<sub>6</sub> caused almost 50% diminution of the power density per unit mass flow. The optimum nozzle-throat height is, in this case, five times larger [  $(H_I)_{\rm opt}=0.5$  mm], and the value  $(P_o\,H_I)_{\rm opt}=0.76$  atm·cm has been calculated.  $^{3,33,34,35}$ 

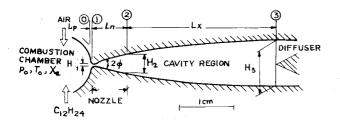

After  $C_6H_6$ , the next example of liquid hydrocarbons studied was the technically attractive kerosene ( $C_{12}H_{24}$ ). The calculations were carried out in the same way as previously, and the main data describing the cw-GDL driven by  $C_{12}H_{24}$  combustion in air are listed in Figs. 2 and 4. The comparison with benzene shows that the increase of  $H_2O$  from  $X_{H_2O} = 0.0793$  (for  $C_6H_6$ ) up to  $X_{H_2O} = 0.1291$  (for  $C_{12}H_{24}$ ) was followed by a drop of  $P_g$  down to  $P_g = 7.69$  kW/kg-sec<sup>-1</sup>.

Table 1 Main parameters of an ideal-mixture cw-GDL

| $T_o = 2221$ K     | $p_o = 15 \text{ atm}$     | $M_{2s} = 6.9$               | $\Pi_{v2} = 0.7$             | $T_s = 300 \text{K}$     |
|--------------------|----------------------------|------------------------------|------------------------------|--------------------------|
| $g_w = 0.04165$    | $P_g = 17.79 \text{ kW/k}$ | g-                           |                              |                          |
|                    | sec-1                      | $L_n = 8.124  \text{cm}$     | $T_3 = 548^{\circ} \text{K}$ | $X_{CO_2} = 0.1176$      |
| $q_v = 0.56654$    | G = 0.6545  kg/sec         | $L_x = 29.451 \text{ cm}$    | $p_3 = 0.0086$ atm           | $X_{N_2} = 0.8732$       |
| $t_{i} = 0.29246$  | $H_I = 0.5048$             | $L_{\nu} = 1.0681 \text{ m}$ | $M_3 = 4.26$                 | $X_{H_2}^{2}$ O = 0.0092 |
| $\eta_r = 0.82030$ | $H_2 = 3.2808$ cm          | $H_3 = 5.6220 \mathrm{cm}$   | $Re_1 = 19,503$              | $Re_3^2 = 42,992$        |

The energetic efficiency dropped to  $\eta_e = 0.29\%$ , and total output power extracted from the one-segment cavity was equal to only  $P_c = 0.67$  kW. Following the increase of the effective velocity of the vibrational energy relaxation, <sup>3</sup> the parameter  $p_o H_{l \text{ opt}}$  diminished again, reaching for  $C_{12}H_{24}$  the value of 0.09 atm. cm.

In the cases of both benzene and kerosene the stagnation temperature  $T_o$  is almost the same and equals approximately 2200°K, but this value could be changed easily. Therefore, additional calculations have been performed to examine the influence of  $T_o$  on laser performance and to check whether this value is very different from an optimum one. Some results obtained for the case of an ideal-mixture laser (as previously for:  $p_0 = 15$  atm,  $M_{2s} = 6.9$ , S = 0.02,  $2\phi = 30^{\circ}$  and  $\Pi_{v2} = 0.7$ ) are presented in Fig. 5. It is evident from the figure that, for  $p_o = 15$  atm,  $(T_o)_{opt} \cong 2000$ ° K. It is therefore reasonable to assume combustion with air/fuel ratio  $\alpha_s$  slightly greater than stoichiometric, which results in lowering the stagnation temperature and avoiding insufficient combustion and creation of smoke. The amount of O<sub>2</sub> in the working gas which will appear in this case causes only a relatively small drop of the laser performance. Calculations for the case of the C<sub>6</sub>H<sub>6</sub> laser show that  $T_o = 2000$ °K results from the combustion with the coefficient  $\alpha_s = 1.2$ , and for the value  $\alpha_s \cong 1.1$  there is an insignificant optimum with  $T_o \cong 2100^{\circ} \text{K}$ ,  $X_{O_2} \cong 0.02$ , and  $(P_g)_{\alpha_g=1.1}/(P_g)_{\alpha_g=1.0} \cong 1.015.$ 



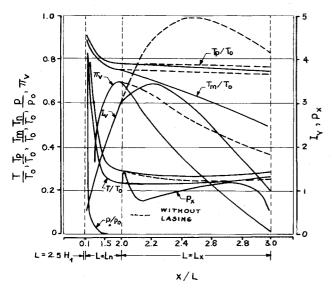



Fig. 4 Example of the distribution of several parameters along the flow axis in a single-nozzle channel of the cw-GDL driven by  $C_{12}H_{24}$  combustion in air at  $p_0 = 15$  atm.

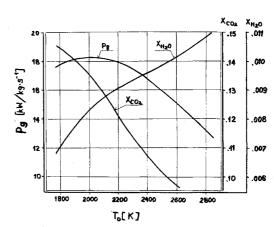



Fig. 5 Dependence of the output power per unit mass flow  $P_g$  and optimum water and carbon dioxide concentrations  $X_{\rm H_20}$  and  $X_{\rm CO_2}$  on stagnation temperature  $T_o$  for an ideal-mixture cw-GDL working at stagnation pressure  $p_o=15$  atm and  $M_{2s}=6.9$ .

Criteria for selection of the proper value of the stagnation pressure  $p_o$  are very flexible, because the influence of  $p_o$  on  $P_g$  and  $\eta_e$  of the GDL is but slight. Calculations for the case of  $C_6H_6$  and  $p_o=50$  atm show that  $P_g$  and  $\eta_e$  are almost identical as for  $p_o=15$  atm. This is expected because  $T_o$  was kept approximately constant. All dimensions of the channel are approximately three times smaller, and the exit pressure  $p_3$ , approximately proportional to  $p_o$ , is greater. Therefore, increasing  $p_o$  makes the problem of exit diffuser for high values of  $M_{2s}$  easier to cope with but also causes proportional increase of the power needed for compression of air supplied to the combustion chamber and makes manufacturing of the nozzle system more difficult.

### IV. Conclusions

The performance of both benzene ( $C_6H_6$ ) and kerosene ( $C_{12}H_{24}$ ) for use as fuels in air-combustion-driven cw-GDL's was calculated. The predicted output power per unit mass flow was about 11 kW/kg-sec<sup>-1</sup> (for  $C_6H_6$ ) and 7.6 kW/kg-sec<sup>-1</sup> (for  $C_{12}H_{24}$ ). This means about 39% and 58% deterioration if compared with output power produced by low  $H_2O$ -concentration ideal mixture ( $P_g = 18 \text{ kW/kg-sec}^{-1}$ ). The essential geometric and physical conditions necessary for realization of efficient cw-GDL were identified for both fuels.

The obtained results are in satisfactory agreement with those presented elsewhere. Somewhat higher values given in Ref. 3, e.g., for combustion of benzene, can be explained by differences in kinetic rates assumed.  $^{36}$  The rates utilized in the present paper have been chosen so as to obtain rather pessimistic values of  $P_g$ . One also should remember that the presented calculations are based on the assumption of the resonator model that is somewhat abstract and may differ from an actual optical system chosen for the laser.

#### References

<sup>&</sup>lt;sup>1</sup>Hurle, I.R. and Hertzberg, A., "Electronic Population Inversions by Fluid-Mechanical Techniques," *The Physics of Fluids*, Vol. 8, No. 9, Sept. 1965, p. 1601.

<sup>&</sup>lt;sup>2</sup>Gerry, E.T., "Gas Dynamic Lasers," *IEEE Spectrum*, Vol. 7, No. 11, Nov. 1970, pp. 51-56.

<sup>3</sup>Anderson, J.D., Jr. and Harris, E.L., "Modern Advances in the Physics of Gasdynamic Lasers, "AIAA Ppaer, 72-143, Jan. 1972; also, "Gasdynamic Laser 2 Years Later," *Laser Focus*, May 1972, p. 32; also Anderson, J.D., Jr., "Gas Dynamic Lasers: A State-of-the-Art Survey," November 1972, p. 180.

<sup>4</sup>Christiansen, W. H. and Hertzberg, A., "Gasdynamic Lasers and Photon Machines," *Proceedings of the IEEE*, Vol. 61, No. 8, Aug. 1973, pp. 1060-1072.

<sup>5</sup>Christiansen, W.H., "Pulsed Gasdynamic Lasers," AIAA Paper 71-572, Palo Alto, Calif., 1971.

<sup>6</sup>Anderson, J.D., Jr. and Winkler, E.M., "High Temperature Aerodynamics with Electromagnetic Radiation," *Proceedings of the IEEE*, Vol. 59, No. 4, April 1971, pp. 651-658.

<sup>7</sup>Brunne, M., Milewski, J., Stanco, J., and Zielinski, A., "The Concepts of High Power CW Gasdynamic Lasers for Industrial Application," *Transactions of the Institute of Fluid-Flow Machines*, No. 62-63, 1973, pp. 195-227.

<sup>8</sup>Milewski, J., Brunne, M., Stanco, J., Zielinski, A., Irczuk, M., and Kusmierek, J., "CW Gasdynamic Thermally Excited and Selectively Pumped CO<sub>2</sub>-N<sub>2</sub> Mixing Laser," *Bulletin de L'Acad. Polonaise des Sc.*, Vol. 20, No. 4, April 1972, pp. 73-79.

<sup>9</sup>Taran, J.P.E., Charpenel, M., and Borghi, R., "Investigation of a Mixing CO<sub>2</sub> GDL," AIAA Paper 73-622, Palm Springs, Calif., 1973.

<sup>10</sup>Meinzer, R.A., "Experimental Gas Dynamic Laser Studies,"

AIAA Journal, Vol. 10, April 1972, pp. 388-393.

<sup>11</sup>Tulip, J. and Seguin H., "Gas Dynamic CO<sub>2</sub> Laser Pumped by Combustion of Hydrocarbons," *Journal of Applied Physics*, Vol. 42, Aug. 1971, pp. 3393-3401.

<sup>12</sup>Demin, A.I., Kudryavtsev, Ye. M., Sobolev, N.N., Rayzulayev, V.N., "Gas Dynamic Laser with a High Content of Water Vapor," Rept. IN:Sbl, No. 163, Oct. 1972, pp. 33-40, Lebedev Physics Institute.

<sup>13</sup>Sato, K. and Sekiguchi, T., "Effects of Water Vapor on Output Power of CO<sub>2</sub> Gas Dynamic Laser," *Journal of the Physical Society of Japan*, Vol. 35, No. 1, 1973, p. 315.

<sup>14</sup> Anderson, J.D., Jr., "Time-Dependent Analysis of Population Inversion in an Expanding Gas," NOLTR 69-200, Dec. 1969, Naval Ordnance Lab., White Oak, Silver Springs, Md.

<sup>15</sup> Glowacki, W.J. and Anderson, J.D., Jr., "A Computer Program for CO<sub>2</sub>/N<sub>2</sub>/H<sub>2</sub>O Gasdynamic Laser Gain and Maximum Available Power," NOLTR 71-210, Oct. 1971, Naval Ordnance Lab., White Oak, Silver Springs, Md.

<sup>16</sup> Anderson, J.D., Jr., "Numerical Experiments Associated with Gas Dynamic Lasers," NOLTR 70-198, Sept. 1970, Naval Ordnance Lab.

<sup>17</sup>Munjee, S.A., M.S. Thesis, 1970, University of Washington, Aerospace Research Laboratory, Seattle, Wash.

<sup>18</sup>Knoke, G.S., "A Four-Temperature Model Applied to the Development of the CO<sub>2</sub>-N<sub>2</sub> Gas Dynamic Laser," AIAA 6th Region Annual Student Conference, May 1973, Point Mugu, Calif.

<sup>19</sup>Brunne, M., Milewski, J., Stanco, J., and Zielinski, A., "Numerical Calculations of CO<sub>2</sub> Gasdynamic Laser Parameters,"Proceedings of the 11th International Conference on Phenomena in

*Ionized Gases*, Sept. 1973, No. 3.1.8.8, European Agency of Atomic Energy, Prague, Czechoslovakia, p. 168.

<sup>20</sup>Kozlov, G.I., Ivanov, V.N., and Korablev, A.S., "Gasyynamic Laser Using Combustion Products from Hydrocarbon-Air Mixture," *ZhETFP*, Vol. 17, No. 12, Dec. 1973, pp. 651-654; also "Study of the Amplification of Light in a Pulsed Acetylene-Air Gasdynamic Laser," *UhETF*, Vol. 65, No. 1, 1973, pp. 82-88.

<sup>21</sup> Brunne, M., Milewski, J., Stanco, J., and Zielinski, A., "A Computer Program for Analyzing the Usefulness of  $C_mH_n$  Combustion in Air for  $CO_2$  Gasdynamic Lasers," Rept. 735/72, Oct. 1972, Institute of Fluid-Flow Machines, Gdansk, Poland.

<sup>22</sup>Huff, V. N., Gordon, S. and Morrell, V.E., Rept. 1037, NACA. <sup>23</sup>Harrach, R. J. and Einwohner, T. H., "Four-Temperature Kinetic Model for a CO<sub>2</sub> Laser Amplifier," UCRL-51399, May 1973,

Lawrence Livermore Lab., University of California.

<sup>24</sup>Taylor, R.L. and Bitterman, S., "Survey of Vibrational Relaxation Data for Processes Important in the CO<sub>2</sub>-N<sub>2</sub> Laser System," *Reviews of Modern Physics*, Vol. 41, No. 1.

<sup>25</sup>Generalov, N.A., Kozlov, G. I., and Selezneva, I.K., "Calculating the Characteristics of a Gasdynamic Laser," *ZhPMTF*, No. 5, 1972, pp. 33-40 (in Russian).

<sup>26</sup> Rosser, W. A., Jr., Hoag, E., and Gerry, E.T., "Relaxation of Excess Populations in the Lower Laser Level CO<sub>2</sub>(1000)," *The Journal of Chemical Physics*, Vol. 57, No. 10, Nov. 1972, pp. 4153-4164.

<sup>27</sup> Brunne, M., Malaczynski, G., Milewski, J., and Stanco, J., "Some Effects of Interaction of Monochromatic Radiation with a Flowing Optically Active Medium. Part II: CW Gasdynamic Quantum Generator," *Bulletin de L'Acad. Polonaise des Sc.*, Vol. 18, No. 3, March 1970, pp. 33-40.

<sup>28</sup> Brunne, M., Malaczynski, G., Milewski, J., and Stanco, J., "Some Effects of Interaction of Monochromatic Radiation with a Flowing Optically Active Medium. Part IV: Modified CW Gasdynamic Quantum Generator," *Bulletin de L'Acad. Polonaise des Sc.*, Vol. 18, No. 6, June 1970, pp. 63-68.

<sup>29</sup>Brunne, M., Milewski, J., Stanco, J., and Zielinski, A., "Multisectional CW-Gasdynamic Laser," *Bulletin de L'Acad. Polonaise des Sc.*, Vol. 20, No. 5, May 1972, pp. 107-115.

<sup>30</sup>Cool, T., A., "Power and Gain Characteristics of High Speed Flow Lasers," *Journal of Applied Physics*, Vol. 40, No. 9, Aug. 1969, pp. 3563-3573.

<sup>31</sup>Herzberg, G., *Molecular Spectra and Molecular Structure*, von Nostrand, New York.

<sup>32</sup>Moore, C. B., Wood, R. E., Hu, B. L., and Yardley, J. T., "Vibrational Energy Transfer in CO<sub>2</sub> Lasers," *Journal of Chemical Physics*, Vol. 46, No. 11, June 1967, pp. 4222-4231.

<sup>53</sup> Greenfield, E., "Pulsed Gasdynamic Laser," Ph.D. thesis, 1972, Hebrew University, Jerusalem, Israel.

<sup>34</sup>Greenberg, R.A., Schneidermann, A.M., Ahouse, D.R., and Parmentier, E.M., "Rapid Expansion Nozzles for Gas Dynamic Lasers," AMP314, Dec. 1970, AVCO-Everett.

<sup>35</sup>Gerry, E.T., "Gasdynamic Lasers," AIAA Paper 71-23, New York, N.Y., 1971.

<sup>36</sup> Anderson, J. D., Jr., "Sensitivity of Gasdynamic Laser Calculations to Uncertainties in Kinetic Rates," TR AE 73-2, Oct. 1973, University of Maryland, College Park, Md.